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Implicit Schemes and LU Decompositions* 
By A. Jameson** and E. Turkel*** 

Abstact. Implicit methods for hyperbolic equations are analyzed by constructing LU 
factorizations. It is shown that the solution of the resulting tridiagonal systems in one 
dimension is well conditioned if and only if the LU factors are diagonally dominant. Stable 
implicit methods that have diagonally dominant factors are constructed for hyperbolic 
equations in n space dimensions. Only two factors are required even in three space 
dimensions. Acceleration to a steady state is analyzed. When the multidimensional back- 
ward Euler method is used with large time steps, it is shown that the scheme approximates a 
Newton-Raphson iteration procedure. 

I. Introduction. The use of implicit methods to solve hyperbolic equations has 
been increasing in recent years (e.g. [1], [2], [8]). Although implicit methods are 
frequently unconditionally stable, the permissible time step may still be restricted 
by the need to maintain a desired level of accuracy. Two classes of problems may 
be distinguished for which implicit methods are likely to be advantageous. First, 
there are stiff problems which contain several time scales in which most of the 
energy is contained in the slow modes. Nevertheless, the time step of an explicit 
method would be limited by a stability criterion set by the speed of the fast mode. 
Secondly, there are problems in which only a steady-state solution is desired and 
the time-dependent equations are used merely as a device for the iterative solution 
of the steady-state equations. 

Implicit methods have the disadvantage that they require the solution of a large 
number of coupled equations at each time step. Hence, the reduction in the 
number of time steps compared with an explicit method may be outweighed by the 
increase in the number of arithmetic operations required for each time step. With a 
typical alternating direction method one needs to solve block tridiagonal systems. 
If the solution can be obtained by Gaussian elimination without pivoting, then it 
will be found by the Thomas algorithm in O(m3N) operations where m is the block 
size and N is the number of unknowns; see [7]. For many standard algorithms, 
diagonal dominance is lost when the time steps become large. It is then no longer 
clear that the Thomas algorithm is numerically stable [3], [9]. 

Another difficulty with alternating direction methods is encountered in the 
three-dimensional case. When marching to a steady state using large time steps, 
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one wants to ensure that the numerical solution is independent of the size of the 
time steps. A simple way to do this is to solve for the change in time, Au' = n+ 

at each time step. The equations then have the form 

QnAun = AtLU" 

(see, for example, [1]). In this case it is evident that in the steady state we have 
Lu 0 independent of At. In the two-dimensional case alternating direction 
methods which solve for either un+1 or Aun are equivalent. However, in the 
three-dimensional case the two approaches yield different schemes. The three- 
dimensional alternating direction algorithm is unconditionally stable in the linear 
case if one solves for u"+l, but the steady-state solution depends on At. On the 
other hand, if one solves for Aun to produce a steady solution independent of At, 
then the algorithm is unconditionally unstable for scalar hyperbolic problems 
(Warming, private communication). For the Euler equations, the equation for the 
entropy is essentially a scalar equation. Hence, this method is not stable for 
inviscid fluid dynamics. 

In this study we demonstrate how precalculated LU decompositions may be 
constructed to approximate the implicit equations obtained by linearizing a 
Crank-Nicolson or backward Euler scheme. It is shown that this approach can be 
used to derive schemes which are unconditionally stable in any number of space 
dimensions and also yield a steady-state solution which is independent of At. The 
operation count at each time step is also quite moderate because the systems 
determined by each of the L and U factors involve diagonal block m x m matrices. 
We emphasize that in three dimensions there are only two factors instead of the 
three factors of an alternating direction algorithm. 

The matrices of an unfactored implicit algorithm are not diagonally dominant 
for large time steps. Thus, the usual sufficient conditions for using Gaussian 
elimination without pivoting are no longer satisfied. Nevertheless, we show that the 
LU decomposition can often still be constructed in such a way that each factor is 
diagonally dominant. This ensures the numerical stability of the factored block 
triangular systems at each time step. 

II. One-Dimensional Problems. Consider the one-dimensional system 

(2.1) wt + Aw =0 

with A a constant matrix. 
Then the Crank-Nicolson scheme is given by 

(2.2a) + AtA w+= -I - AtASWn 

or 

(2.2b) (I + A2 )(wn+l - w") = -AtA3wn, 

where 8 is a central difference operator defined by 

(2.3a) ,3Wn =j+ 
j_I (2.3a) j 

~~~~2Ax 
We also define forward and backward difference operators 

(2.3b) D+wj= A Dw1= + wj Ax Wi Ax 
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Equations (2.2a, b) form a block tridiagonal system. We can approximately factor 
(2.2b) within the truncation error O((At)3) by 

(2.4) (I + A4A D+)(I + 
AtA 

D)(wn+ - w_n) = -AtA8wn. 

Since wn+1 - w n is of order At, the difference between the schemes (2.2) and 
(2.4) are terms of order (At)3, and so the additional errors are of the order of the 
truncation error. For a bounded domain the operators I + AtAD+/4 and I + 
AtAD-/4 can be inverted directly by beginning at the left and right boundaries, 
respectively. Computational experience indicates that this sweeping method fails 
for large Avt. This is true even though (2.4) is unconditionally stable in terms of the 
usual initial value stability analysis valid for small Avt. The reason for this is that, if 
A has both positive and negative eigenvalues, the factors lose diagonal dominance. 
The sweeping solution process then becomes numerically unstable. 

We now consider a general three-point difference formula which is a second 
order approximation to (2.1). Let 

(2.5) i\Wn = wn+ 1 _ Wn 

and consider the scheme 

AW( + a(AWn- Wn + AWn 1) 
(2.6) 

j + j_) 

AA [((wn+l - wn+1) + (1 - ()(Wn/ -Wn 

Here, X = At/Ax and ( denotes the weighting of the space differences at the new 
and old time levels. a = 0, t = I yields the Crank-Nicolson scheme while ( = 1 
yields the fully implicit method. a is a matrix parameter that is chosen as a function 
of A so that matrix multiplications are commutative. (2.6) can be rewritten as 

j+ -( A wj) + a(Awjn+ - 2Awjn + Awjn) 

(2.6a) A 
=-2 (j.+ I - j_1) 

or 

(2.6b) Q(wn+l _ wn) =_-XAw, 

where Q is a block tridiagonal matrix. Omitting the effect of boundaries, Q can be 
replaced by LU where L and U have the form 

(2.7) L - I U= [ u2j 

0 '2~~~~~~~ 

If the matrix Q has the decomposition LU with nonsingular factors, then these 
factors are unique to within a diagonal matrix. That is, given L and U, the most 
general decomposition of Q is given by Q = L' U' with L' = LD, U' = D -1U for 
some nonsingular diagonal matrix D. The matrix D does not enter in any essential 
manner, and it will be chosen for convenience. In particular, we consider a scaling 
so that '1 + 12 I 
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We demand that (2.6) be second order accurate in space and set Q = LU with L 
and U given by (2.7). Using a Taylor series expansion and comparing coefficients, 
we find that 

(2.8) 11 = at + (AAA/2, 12 -y-SAA/2, 
(2.8) ul = a - QXA/2, u2= y + (XA/2, 

with a + y = 1. Multiplying L and U as given by (2.8) and comparing with (2.6), 
we find that 

(2.9) a(l - a) + 42X2A = a. 

Now, it is convenient to consider a as dependent on two parameters a1, 02 

(2.9a) a = a, + a2 2X2A 2. 

Hence, 

(2.10) 1 +[1 -(4a2- 1)I2X2A 2 4al] /2 

We stress that the inversion procedure is well conditioned if and only if the 
matrices L and U are well conditioned. For example, in the scalar case with 14 = 1, 
12 = b the inverse L` = (mij) is given by mij = (-b)'-1 for i >j. For b > 1 this is a 
poorly-conditioned matrix. 

Hence, we require for symmetric matrices A that 

(Y-42 ( 22 
and 

(-2 )2(+( 
) 

where a = a(A) and y = y(A). Given two symmetric matrices A and B, A > B 
means (Ax, x) > (Bx, x) for all vectors x. Since a + y = 1, the inversion algo- 
rithm is well conditioned if and only if 

(2.11) (4)2 1 (a_ Y)2 = (2a - 1)2. 

We want the method to be unconditionally stable and so (2.1 1) implies that a and y 
must be functions of A or at least functions of the spectral radius of A. 

For a well-conditioned problem, (2.1 1) together with (2.10) requires that 

(XA2 A < (2a- 1)2 = 1 - (4a2 - 1)I2X2A2 - 4a1 

or, equivalently, 

(2.12) 4a2 2A2A2 1-4a1. 

We summarize the results of this section in the following theorem. 

THEOREM 2.1. Consider the equation 

w, + Awx=O, -OO<x<oo, t>0, 

with A constant and symmetric. We approximate this equation by the scheme 

AWn + -1 AwU1) + a(A wjn+ - 2Awj + Awj1 

j 2 2 (A- w 
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where Aw = Wn+1 - wn and a = a(A), X = At/Ax. This scheme can be described by 

QAw = LUAw = - 2 (1) 

with L and U given by (2.7). 
The scheme is second order accurate if and only if 

11 = (a + QAA/2)q, 12 = (1 - a - MXA/2)q, 

U, = (a - (AA/2)/q, U2 = (1a-( - XAM/2)/q, 

with q arbitrary and a = a(A) with 

a(l - a) + (X2A2/4 = a 

Let a = a1 + a2( 2X2A 2. Then the roundoff error incurred in inverting Q ignoring 
boundary effects is at most linear in the number of unknowns if and only if L and U 
are diagonally dominant. Equivalently, if and only if 

4a2 2X2A2 ? 1 - 4a1. 

In this section we have studied the case in which A is constant. For equations 
with variable A, the elements 11, 12, ul, u2 in (2.7) will be replaced by l1j, 12j, Ulj, u21 
in the jth row of L and U. These elements will then depend on Aj1, Aj, A>+ 1. The 
algorithm for the nonlinear case is given in Section 7. 

III. Analysis of Some Standard Schemes. We now consider some of the methods 
which can be derived from the general three-point scheme (2.6) for constant 
matrices A and show that many of them lead to diagonally dominant L and U 
factors which yield a stable inversion process. 

(1) Standard second-order methods. a1 = a2 = 0; So (2.12) is always satisfied. 
Hence, these methods are well conditioned for all ( and all time steps. 

(2) 2-4 methods. a1 = I a2 = 0; again (2.12) is always satisfied. 
61 12 

(3) 4-4 methods. t = 2 1 = 6 a2 = 3. In this case (2.12) implies that the inversion 
is well conditioned only if XA < 1. This is confirmed by the numerical results of 
[6]. 

(4) Scheme (2.4). a1 = 0, a2 = 4 and so (2.12) implies that the method is well 
conditioned only if t 2X2A 2 < 1. This was confirmed by computer runs. 

(5) Diagonally dominant schemes. If we want schemes that are diagonally domi- 
nant, this can be achieved by choosing a1 < 0, a2 < 0 and a1a2 > 1j6. If al < O, 
a2 < 0, then (2.12) is trivially satisfied. Hence, if the basic scheme is diagonally 
dominant, then the L and U factors are individually diagonally dominant. 

IV. A Practical LU Decomposition. In Section 2 we showed that an LU decom- 
position of form (2.6)-(2.9) is well conditioned if and only if 

(4.1) 2X2A2 < (2a - 1)2. 

In Section 3 we demonstrated that (4.1) is automatically satisfied for several 
well-known schemes. In this case the LU decomposition was useful mainly for the 
purpose of analyzing the scheme because the resulting a is a complicated matrix 
function of A. Furthermore, the introduction of boundaries complicates the LU 
factorization. 

In order to generate new schemes which can be readily generalized to the 
multidimensional situation, we can reverse the approach by choosing the L and U 
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factors as determining the scheme. We can then insure that the LU decomposition 
is quite simple, and at the same time we can select the free parameter a so that (4.1) 
is always satisfied. Letting I * I denote the absolute value of a matrix as determined 
by function theory [ 11], one choice for a is 

(4.2a) a = + IXAt1). 
For two-dimensional problems, ( = 2, this can be generalized by 

(4.2b) a 1 + A-\t + B 

The absolute value of these matrices can be calculated by diagonalizing the 
matrices A and B independently. Although this approach is valid from a theoretical 
viewpoint, it is not computationally efficient. Instead, we can replace (4.2a) by 

(4.3) at =-'(I + ptX); -y = '(I - pa). 

This choice of a satisfies (4.1) if p is equal to or greater than the spectral radius of 
A. This choice yields a scalar a which is computationally efficient. The extensions 
to several dimensions are discussed in Section 6. 

V. Boundary Treatment. There are two different approaches towards constructing 
boundary equations for those data that are not specified analytically. One ap- 
proach is to put reasonable factors into the upper part of L and the lower corner of 
U. Having, by some other procedure, decided what equations one wants, one then 
uses the Sherman-Morrison formulas to correct the inverse for the given boundary 
treatment. This procedure can be expensive as another inverse is needed for each 
rank-one modification. 

Instead, we shall include the boundary treatment within the LU decomposition. 
We shall concentrate on the left boundary, x = 0, which requires modification of 
the L matrix. Similar modifications affect the U matrix for the right boundary. 

Assuming that the boundary treatment is of first order accuracy, one finds that L 
should be modified to have the form 

a - 2 c + 22 

(5.1) L= _ 2 2 
2 2 

0 

with a + c = I. We use linear extrapolation outside the domain for those variables 
not given analytically. This is equivalent to (5.1) with 
(5.2) a=a+2y, c=-y. 

We then have 

THEOREM 5.1. Consider the equation 

w, + AwX =0, O x < oo, t >O, 
with A constant and symmetric. We approximate this equation by (2.6)-(2.9) in the 
interior. Depending on the sign of the eigenvalues of A, we appropriately modify the 
matrix L by (5.1)-(5.2) to account for the left boundary. The resulting initial- 
boundary value problem is then unconditionally stable for ( > ?h. 
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Proof. We first consider a scalar equation. When A > 0 boundary data, w(O, t) = 
f(t), is given and the matrix L is modified so that wo = f(t). In this case the 
stability analysis is simple. 

When A < 0 the matrix L is modified as given by (5.1)-(5.2). The stability then 
follows from the theory of Gustafsson, Kreiss, and Sundstrom [5]. The straightfor- 
ward but involved algebra is left to the reader. For systems of equations the same 
results hold provided that the modifications (5.1)-(5.2) are done for the characteris- 
tic variables coming into the boundary [4]. 

(5.1) requires the inversion of a 2 x 2 block matrix for the boundary values. The 
algorithmic aspects of the scheme are described in greater detail in Section 7. 

VI. Multidimensional LU Implicit Algorithms. In one dimension we constructed 
an approximate factorization which had the interpretation that both L and U were 
approximations to one-sided differences. In two dimensions we can extend this 
technique. Consider the equation 

(6.1) w,+Aw,+Bwy=O 

with both A and B constant and symmetric. Let 

1, 0 

12 At At 
L= 0 A Ay 

13 

(6.2) 0 13 12 11 

Ul U2 0 U3 .. 0 

0 * 

where 

I1 = a + (XA + B), 12 = 2 XA_ 13 2 2XB 
2 a-~-A+) 2= 2 ' 2 2 

ul = a - 2 (A + B), 2+ U=A Y + 2AB 

We then have the approximation 

- ( XB) [a - X(A + B)] Aw,n _I + (y -XB)(y + (AAw, + l j 

+ ( (-XA) [a -X(A + B) A Win 

+2 [a + 2tX(A + B)](y + (XA)Awin+ 

(6.3) +[ a2+ - (A +B)2_(4 (A2+ B)]Aw 

4~~~ 
- (YX(A)(y + A), l+ 

+[ a + ' 
X(A + B) ] (y + (AB)Awn 

-2 - + j+ 
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In this case we cannot represent the standard schemes by this simple LU 
decomposition because of the fill in. Nevertheless, the scheme we present is still 
second order. 

By arguments similar to the one-dimensional situation we have 

LEMMA 6. 1. The scheme (6.2)-(6.3) has diagonally dominant factors L and U if 

(6.4a) a + T2 (A + B) < |Y _?MA + 'Y y _ B 
2 

~~2 2 2 2~ 

A weaker sufficient condition is given by 

64 
a ( 1XA < a _XA aand 2 + 2XB < |1 2 2| 
2 2 2 

_ 
2 2i 2 2 2~ 

This is the same as in the one-dimensional case, and so we require 

(6.5) (XAM)2 < '( - Y)2 and (XB()2 ? ,(a _ y)2. 

This can be accomplished by choosing 

(I + 2Xp I - 2Xg (6.6) a = 2 2 = 

with p > max(p(A), p(B)). Similar extensions work in three dimensions. 

For the nonlinear equation 

wt + fx + gy + h, = 0, 

the scheme is given by Q LU and 

n+1 n) x x 
Q(w -w") = --j(f+ I,k f,-1,J,k)-2(gij+l,k ,-1,k) 

(6.7) 2 2 

- 2h(i jk+l - hi,j,k-1) 

with 

A =aaff B= agw C= aah. aw' aw' aw 

By the construction of Q, (6.7) is the matrix representation of the operator 
equation 

I + AD x A 
+ t (y B Dz( 

+ tD 
2 3 

tD - 2 

[~~~I AtD 2 + !t - 3 ) AtD AtB ( -Y ) 

(6.8) 
. I+/D(2+ 3 ) t+( 2 3) 

+AtD+( 42 + 3Y )(Wn+l _Wn) 
+ -)](w3 + - w ) 

= Att(8xA + 3YB + OzC)wn 1 
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where 8 , SY, 5Z are central difference operators in x, y, and z. This is equivalent to 

I [I +D I + AtD + (D ) B ( 2 + 3 ) + 
[l-tD 2 3 2 2+ 3 3 Dt(_( 2 3 ) 
I+ AtDx?~ + + AtDy (B + + tD C+ w)Jn+1 

(6.9) (ItD ()C 
-LAtDz( (1 S)C + Y 

[I- AtI4( (1 )A-Y) -A tDY+(1 - )B Y) 
[ +( 2 3 ( 2 3) 

-AtDz( (1-I)C - 

We now prove the stability of a Crank-Nicolson type scheme for the three- 
dimensional symmetric hyperbolic system. 

THEOREM 6. 1. Consider the equation 

(6.10) wt + Awx + Bwy + Cwz = O, -oo < x, h, z < oo, t > O, 

with A, B, C constant and symmetric. We approximate (6.10) by the finite difference 
scheme (6.9) with t = 2. The resultant initial value scheme is stable. 

Proof. For t = 1, (6.9) can be rewritten as 

(6.11) p:n+l = P*wn or w n+1 = Gwn 

with G = p-lp*. We introduce a new norm defined by 

l/will = (w, Hw), H = P + P*. 

Then 

I1IWn+ 11I = IIIGwnIII = (Gwn, HGwn) = (p-lp*wn, (p + p*)p-lp*wn) 
- (p-lp*Wn, P*(I + P-lP*)wfn) = (wn, p(p-l)*p*(j + PlP* )w n) 

= (Wn, p(I + p-lp*)wn) = (wn, (p + p*)wn) = (wn, Hwn) = llwnill. 

Hence, the scheme is nondissipative in the new norm. As long as both L and U are 
diagonally dominant, we have that I PII > p > 0, and so the new norm is equiva- 
lent to the L2 norm. This proves stability for the initial value problem. For t > 2 

the schemes are dissipative. 
One of the major advantages of the LU decomposition is that only two factors 

are needed even in three dimensions. An alternative approach that also requires 
only two factors is presented in [10]. However, this approach by Steger and 
Warming requires five points in each space dimension for second order accuracy 
and so complicates the boundary treatment. 

VII. Algorithm Aspects. We now consider a one-dimensional equation in con- 
servation form 



394 A. JAMESON AND E. TURKEL 

We approximate this, in time, by 

Awn = wn+1 _ wn = _At[U+1 

= -At[ fn + ((AAw%)x] + 0((At)2), 

where A = af/aw. Hence, we have 

[I + taAA/x]AAwn f = (f)n 

and, as before, t > 2. 

To approximate this in space we find an LU decomposition. Let X = At/Ax, and 
define 

2(i+ I 4- f1), I <j <N, 
(7.2) gj= (f2f) 1= 1, 

-A(fN-fN- 1) j= N. 

We replace the matrix A in the LU decomposition by linear combinations of Aj - 
and A>+ 1 so that the resulting scheme is in conservation form. At the boundaries we 
must solve a simple 2 x 2 system for w1 and wN. LUz = g is then solved by Ly = g 
followed by Uz = y. 

The forward sweep Ly = g is given by 

[I + XA2 (X-A1) y I = ag, + 792 _ (92 (g _1 2 ~~~~~~~~2 

(7*3) ( M> (A>l 2 2 ji 

Similarly, the backward sweep Uz = y is given by 

I + 
X 

(AN - AN-T1) ZN = aYN + YYN- I 2 (YNYN-1), [ 22 
(7.) ( Mi ( Mj + I)1 (a -- )ZY Z(+i+) +I +Yi, j= N- 1, ...,~ 1. 

Finally, 
n+1 = Wn + z (7.5) j j j. 

For the LU decomposition to be well conditioned we choose a = a(A) so that 
(2a -1)2 > (-Aj)2. A particular choice with a scalar a is 

Il+Xgp l-XUp (7.6) a 2 y 2 p > max p(Aj). 

For ( = 2 the scheme is nondissipative for all a, while for >2 the scheme is 
dissipative. In all cases the schemes are unconditionally stable. 

In two-space dimensions the interior difference scheme in the forward sweep is 
given by 

( a + 2 A1j + 2 Bij J 

(77)= - 2(Y- - 1,j)yj- 1j- (y - aBisj- l)yij- I + gjj 

where A = af/aw and B = ag/aw. 
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One can begin in the lower left-hand corner and sweep towards the upper 
right-hand corner. For the boundaries, the four points in the lower left-hand corner 
are coupled to each other and so a 4 x 4 block system has to be inverted. For other 
boundary points along the left and lower boundaries, a 2 x 2 block system is 
solved. As in the one-dimensional case, all these boundary solutions are calculated 
explicitly. For the backward sweep in two dimensions, we have 

(7.8) (a- - 

= - - (Y -Ai+ lj)zi+ 1,j- (Y- XBj + I)zij+ I + Yij 

So one can start in the upper right-hand corner and sweep towards the lower 
left-hand corner. A complete time step consists of solving (7.7) and (7.8) followed 
by 

n+ 1 = Wi J w.. Li +ij. 

The algorithm (7.7) is completely serial if performed with the usual ordering. For 
a vector machine it is preferable to solve for the unknowns along diagonals. Then, 
for each diagonal point (i, j), the variables at (i, j - 1) and (i - 1, j) are already 
known, and so the length of the vector is equal to the length of the diagonal 
(J. Lambiotte, personal communication). 

VIII. Acceleration to Steady State. We consider the general equation 

(8.1) f(u) = 0. 
We generalize this equation by considering the associated time-dependent equation 

(8.2) u, + f(u) = 0. 
This equation is solved numerically by an implicit method. Let Avun = u"n+ - u". 
Typically, 

(8.3) AUn + At[Jn+1l + (1 - ()fn + A?tgn] = 0, 

where gn is some function of A\un introduced by the scheme. Therefore, L\tgn is of 
order At. As before, we linearize this equation and define the operator J = af/au. 
Then, (8.3) is replaced by 

(8.4) (I + (AtJn)?Aun + I\t(fn + Atgn) = 0. 

In order to accelerate the method, we wish to use a large time step. Hence, we 
consider the limit l\t -> so. We then have 

THEOREM 8.1. Consider the nonlinear equation (8.1) and a time-like iteration 
procedure given by (8.4). As At - oo, (8.4) approaches the Newton-Raphson formula 
if and only if= I andg=0. 

Proof. 
Case I: g identically zero. In this case the highest order terms yield 

(8.5) v nA U n = _fn. 
Hence, the backward Euler method, ( = 1, corresponds to the Newton-Raphson 
algorithm. All other time averaging, e.g., Crank-Nicolson, t seems to slow 
down the convergence. 
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Case II: g not identically zero. The highest order term is now 

(8.6) (A t)2g = 0. 

For the general one-dimensional scheme (2.6), this corresponds to 02 # 0, and then 
(8.6) becomes 

(8.7) D+D _Awn= 0. 

This again may slow down the rate of convergence to the steady state. 
Hence, for a one-dimensional problem, the LU decomposition discussed in 

Section 4 can reduce the rate of convergence. For two-dimensional problems, both 
A.D.I. and the LU decomposition introduce terms of order (At)2. Hence, both 
methods will converge more slowly than a full two-dimensional backward Euler 
method. Desideri et al. [3] discuss ways of accelerating the two-dimensional A.D.I. 
method. For three-space dimensions, the A.D.I. method introduces terms of order 
(At)3 which can be expected to reduce the rate of convergence even further. The 
LU decomposition scheme has terms at most of order (At)2 independent of the 
number of dimensions. For all these cases, the truncation error has an additional 
factor of At since Aw is of order At. Hence, choosing a sequence of time steps may 
accelerate the convergence by a mechanism similar to that discussed in [3]. An 
alternative possibility is to use the LU decomposition as a preconditioning for a 
conjugate gradient method based on a backward Euler approximation. 

A. Conclusion. Given a three-point implicit scheme for a hyperbolic problem, 
the associated LU decomposition is constructed. It is then shown that the im- 
portant requirement for a well-conditioned problem is that both L and U be 
diagonally dominant. It is shown that this is true for most standard schemes even 
though the original matrix is not diagonally dominant. 

The situation is then reversed and we begin with the L and U factors in the 
construction of new implicit methods. Though unconditionally stable, these meth- 
ods are effectively explicit since one can march directly from one boundary to the 
other. Boundary treatment, nonlinear equations, and several dimensions are all 
easily included. The method is unconditionally stable for all space dimensions even 
though the time step independent version of the A.D.I. method is unstable for 
three-space dimensions. 

Both the LU decomposition and the A.D.I. method add errors that are of order 
(At)2 to the basic scheme. It is shown that the multidimensional backward Euler 
method is equivalent to the Newton-Raphson method for large time steps. The 
addition of (At)2 terms destroys this equivalence and reduces the rate of conver- 
gence to a steady-state solution. In three dimensions, the A.D.I. scheme introduces 
(At)3 errors which reduce the rate of convergence even further for large At. Since 
Aw is of the order of At, the truncation error for small At is reduced by an extra 
factor of At beyond the previously mentioned errors. 

The LU decomposition is less efficient than the standard methods in one-space 
dimension. For two dimensions, the LU factorization is slightly more efficient than 
the A.D.I. method with the advantages depending on computer architecture. The 
main advantages of the new method are in three-space dimensions. The LU 
decomposition requires only two sweeps through the grid and is unconditionally 



IMPLICIT SCHEMES AND LU DECOMPOSITIONS 397 

stable while A.D.I. requires three sweeps and in delta form is unconditionally 
unstable. Furthermore, the rate of convergence for large time steps to a steady state 
is slower for A.D.I. 
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